GlyCLICK® and Middle-up LC-MS Enables Robust ADC Development

Scientists at the University of Geneva and CNRS present site-specific ADCs generated using the GlyCLICK technology and an analytical middle-up LC-HRMS workflow as a potential core module for ADC development.

 

Antibody-drug conjugates (ADCs) are efficient therapeutic agents that possess the cell-targeting properties of monoclonal antibodies combined with the potency of cytotoxic drugs. Early generation ADCs were predominantly obtained through non-selective conjugation methods by incorporation of a drug payload at randomly distributed sites. Such methods result in highly heterogenous subpopulations of varying antibody-drug ratio (DAR) leading to potential loss of efficacy and impaired pharmacokinetics. While alternative strategies exploring genetic engineering have emerged for conjugation at non-natural amino acids, challenges related to both production and analytical characterization persist.

 

Glycan-mediated bioconjugation using the GlyCLICK technology is an attractive option to overcome the challenges of conventional bioconjugation without the need for genetic engineering to produce custom ADCs. By utilizing a unique combination of enzymes, the conserved Fc-glycans are remodeled and site-specifically conjugated using click chemistry for ADCs carrying two payloads per antibody (DAR=2.0) having controlled drug stoichiometry and preserved immunoreactivity. In this paper, Duivelshof et al. developed a site-specific ADC by coupling trastuzumab to DM1 using the GlyCLICK technology and evaluated the quality of the conjugation process using complementary reversed phase (RPLC) and hydrophilic interaction chromatography (HILIC) coupled to high-resolution mass spectrometry (HRMS).

 

The trastuzumab antibody was site-specifically conjugated to DBCO-functionalized DM1 (DBCO-PEG4-Ahx-DM1) using the GlyCLICK technology. To reduce sample complexity, the antibodies were digested with FabRICATOR® (Ides) or FabALACTICA® (IgdE) and reduced for comparison of native and GlyCLICK conjugated trastuzumab at the subunit level. The complementary HILIC and RPLC workflow allowed the authors to observe the significant shift in retention between the lipophilic drug payloads on the ADC and the hydrophilic N-glycans on native trastuzumab. These results enabled the scientists to confirm site-specific conjugation at the Fc-glycans sites, while hyphenation to HRMS detection allowed accurate determination of a DAR of 2.0 for GlyCLICK conjugated trastuzumab, which was not possible at the intact ADC level.


“Most ADCs are produced with non-selective bioconjugation of drug payloads to lysine or cysteine residues creating a wide variety of drug-antibody ratios (DAR). In the frame of new ADC product development, we believe that having control over the DAR and drug load distribution (DLD) is of crucial importance, as is the ability to accurately monitor these two CQAs. Therefore, the combination of the GlyCLICK technology to create homogeneous site-specific ADCs with the middle-up LC/HRMS approach to rapidly determine both the DLD and DAR has a great potential for ADC development.”

 

Duivelshof et al., 2020. Glycan-mediated technology for obtaining homogenous site-specific conjugated antibody-drug conjugates: synthesis and analytical characterization by using complementary middle-up LC/HRMS analysis. Analytical Chemistry. doi: 10.1021/acs.analchem.0c00282