Articles tagged ”Subunit”

Free Thiols using FabRICATOR® and FabALACTICA®

In biopharmaceutical product development and manufacturing, free thiol content is one of the product quality attributes of interest as its presence could impact structure, stability and function of the product.

At Biogen, Yi Pu et al have optimized a label-free LC (UV) / MS method for free thiol quantification at a subunit level of IgG1 and IgG4. The new method, which is based on a method developed by Faid et al*, was compared to two conventional approaches, Ellman’s assay and peptide mapping.

It is very challenging to identify free thiol forms by mass spectrometry at the intact antibody level. By combining the highly specific proteolytic enzymes FabALACTICA (IgdE) and FabRICATOR (IdeS) the authors generated the subunits Fab, hinge and Fc/2, suited for confident mass determination. The subunits were subsequently separated on a polyphenyl reversed phase column in order to separate free thiol forms from their corresponding disulphide bond-linked form. A baseline or near baseline separation was obtained making it possible to calculate the free thiol content on each subunit.

The result of the quantification of free thiols from all three methods were comparable and showed similar trends even though the peptide mapping approach generally gave a higher free thiol content.

The authors conclude that compared to Ellman’s assay, the subunit approach is more sensitive, requires less sample and provides domain-specific information of the free thiol content. Compared to peptide mapping, the subunit method is faster, less labour intensive and lacks dependence on labelling efficiency. Finally, it demonstrated promise in the quantification of free thiols in a high throughput manner with domain specific information available.

The developed method has successfully been applied to several in-house IgG1 mAbs with different hydrophobicity and isoelectric points.

 

*V. Faid Y. Leblanc N. Bihoreau G. Chevreux Middle-up analysis of monoclonal antibodies after combined IgdE and IdeS hinge proteolysis: Investigation of free sulfhydryls, J. Pharm. Biomed. Anal. 149 (2018) 541-546, https://doi.org/10.1016/j.jpba.2017.11.046

 

For more information on FabRICATOR and FabALACTICA please visit the following pages:

The full text paper is available online:

ADC Subunit Characterization of Drug Load and Glycosylation using HILIC-MS

FabRICATOR-HILIC-MS

In a collaboration headed by Davy Guillarme at University of Geneva, scientists have explored the characterization of subunits derived from antibody drug conjugates (ADCs) using hydrophilic interaction chromatography (HILIC) coupled to mass spectrometry (D’Atri et al. 2018).
The scientists used brentuximab vedotin (BV, Adcetris®), an approved ADC for treatment of Hodgkin lymphoma (HL) and systemic anaplastic large cell lymphoma (ALCL). The BV consists of an antibody directed towards CD30, coupled to the vedotin toxin using cysteine conjugation chemistry. The random cysteine conjugation method results in a heterogeneous attachment of the drug, with differences in efficacy depending on the drug load. For this reason, the amount of conjugated toxins requires careful characterization. A key quality attribute of both antibodies and ADCs is the glycosylation profile, that may affect the stability, efficacy and safety. In this paper, a method to study ADC drug load and glycan profiling in a single experiment was demonstrated.

 

The intact ADC is around 150 kDa, which makes it very complicated to study details with high resolution. For this reason, D’Atri and colleagues used FabRICATOR digestion and reduction to generate specific antibody subunits of around 25 kDa, with increased resolution in both separation and mass determination. New wide-pore HILIC phase has enabled separation of larger molecules such as antibody subunits, and the team has already published a glycoprofiling strategy using HILIC on naked antibodies (Periat et al. 2016).

 

The coupling of HILIC separation to MS of subunits resulted in more detailed characterization of the subunits as compared to reverse phase separation (RP-HPLC). The relative percentage of each subunit aligned well with both methods of separation. However, additional positional isomers of the Fd’ fragment were observed using HILIC separation. Also, the glycoforms of the Fc/2 fragments were chromatographically separated, making mass deconvolution and determination easier. The authors conclude the middle-up HILIC-MS method to be orthogonal to RP-MS with the benefit that the methodology allows simultaneous characterization of drug load and glycosylation of the antibody drug conjugate.

 

FabRICATOR is a protease with a single digestion site below the hinge of IgG. The enzyme is widely used in middle-level analytical workflows for characterization of antibody based biopharmaceuticals. Learn more about FabRICATOR.

 

References

D’Atri, V. et al., 2018. Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. Journal of Chromatography B, 1080, pp.37–41.

Periat, A. et al., 2016. Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. Journal of chromatography. A, 1448, pp.81–92.