Articles tagged ”Oxidation”
C-terminal lysine clipping and Fc receptor binding using SmartEnzymes
Researchers at LFB Biotechnologies in Paris, France have carried out a thorough analysis and characterization of the impact of C-terminal lysine clipping to Fc-receptor binding using a range of SmartEnzymes from Genovis.
The scientists separated an IgG1 antibody using SCX separation and purified the fractions without C-terminal lysines K0, with 1 C-terminal lysine K1 and with both lysines intact K2. The purified fractions were characterized for any further differences using FabRICATOR digestion and middle-level analysis. This approached enabled the researchers to study multiple post-translational modifications such as charge variants, oxidations and Fc glycosylation in a simple and robust way. The characterization revealed that the lysine heterogeneity was the main differentiator and all other PTMs were distributed between the fractions.
Read more »
Antibody Mixtures Digested using GingisREX
The formulation of antibodies in mixtures has revealed significant clinical advantages but causes increased analytical challenges. Long-term studies of formulated antibody mixtures over time are both difficult and time consuming. An example of a post-translational modification that could occur during storage is the oxidation of tyrosine that may induce conformational changes of an antibody. Read more »
SmartEnzymes™ in Quality Control of Commercial Antibodies
In a recent paper, Sokolowska and colleagues at Janssen Research and Development qualified and covalidated a subunit LC-MS method for quality control and stability testing of the oxidation status of commercial antibodies.
LC-MS is commonly used for therapeutic antibody development and characterization within the biopharmaceutical industry due to the inherent strengths to provide site-specific identification and quantitation of post-translational modifications. However, the implementation of LC-MS methods to commercial QC labs is challenging, since there are not many options for fully GMP compliant systems. In addition, the methods often require extensive MS expertise and suffer from time-consuming sample preparation and lack of robustness. To counter these obstacles, Sokolowska et al. have developed an LC-MS method that requires minimum analyst training. It uses validated GMP compliant software and is based on subunit analysis, which is proved to be faster and more robust compared to peptide mapping.
The assay uses FabRICATOR® (IdeS) and IgGZERO® (EndoS) enzymes to generate deglycosylated IgG subunits suitable for MS analysis. FabRICATOR digests the antibody below the hinge and IgGZERO hydrolyzes the Fc N-glycans. The subunits are analyzed using reversed phase-ultraperformance liquid chromatography coupled to a quadrupole time-of-flight (RP-UPLC-QTOF) MS to monitor antibody oxidation for stability testing and commercial product release.
The developed subunit LC-MS assay was covalidated in three laboratories and showed comparable performance. The robustness was tested by varying both the LC-MS settings and the sample preparation. The enzymatic conditions included variations in protein concentration, enzyme lots, enzyme-to-protein ratio, digestion time and temperature, reduction time and temperature, and reagent concentrations. Minor variations in sample preparation all led to measured Fc oxidation within the method variation +/- 0.9%.
The approval of this method opens the door for implementing other subunit LC-MS and multiattribute methods in QC laboratories to modernize commercial QC and stability testing.
Learn more by reading the full paper, follow the link below.
https://pubs.acs.org/doi/full/10.1021/acs.analchem.9b05036
Assessment of Oxidation using FabRICATOR and LC/MS
Oxidation of methionine residues in the Fc region of a therapeutic antibody may affect the binding of the antibody to Protein A and FcRn leading to difficulties in purification or increased clearence in vivo. For the variable regions of the antibody, oxidation may affect antigen binding or lead to increased immunogenicity. For these reasons, the propensity of an IgG molecule to become oxidized is a critical quality attribute to consider early in the selection of therapeutic antibody candidates. The team at Adimab have developed an high-throughput assay based on FabRICATOR digestion and LC/MS analysis to evaluate the oxidation levels of 121 clinical stage antibodies. The antibodies were digested with FabRICATOR for 30 min at 37°C and reduced with DTT to obtain Fc, Fd and LC, prior to analysis on LC/MS, an approach called middle-down. The scientists correlated the observed oxidations with a model of predicted solvent-exposed methionine residues. They authors discovered oxidation at antibodies experimentally that were not predicted in the model, probably due to inaccurate crystal structures or differences in expression host.
Taken together, the paper by Yang et al demonstrates the robustness of the oxidation assay based on FabRICATOR digestion and subunit analysis. The 121 antibodies analyzed in the paper indicated this method applicable to early clone selection for evaluation of antibody oxidation at the subunit level.
- Yang, R. et al., 2017. Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies. mAbs, Ahead of print.
- Read more about FabRICATOR