Articles tagged ”O-glycan Mapping”
Characterization of SARS-CoV-2 Receptor-Binding Domains using SmartEnzymes™
Scientists at Leiden University Medical Center (LUMC) present a multilevel mass spectrometry approach using SmartEnzymes for in-depth characterization of mammalian SARS-CoV-2 receptor-binding (RBD) domains.
The COVID-19 disease caused by the SARS-CoV-2 virus has affected more that 100 million individuals in the ongoing pandemic. The enveloped RNA corona virus contains three structural proteins in the membrane, including the heavily glycosylated spike protein carrying 22 N-glycosylation sites. The spike protein in turn consists of two subunits, S1 and S2, where the receptor-binding domain (RBD) of S1 directly interacts with the ACE2 receptor in the human respiratory tract and facilitates host cell entry. Considering the relevance of RBD glycosylation on ACE2 binding and recognition by neutralizing antibodies, the use of well-characterized S proteins is essential for continued research and development of diagnostic tools and vaccines.

The Crystal Structure of OpeRATOR Reveals O-glycan Substrate Specificity
The O-glycoprotease OpeRATOR® from Genovis has spurred great interest from the community and has become a valuable tool for characterizing O-glycosylated biopharmaceuticals. Through a collaboration with the lab of Marcelo Guerin, the structure of OpeRATOR has now been solved and published in Nature Communications. Read more »