Articles tagged ”GingisKHAN”

Generating Antibody Mimetics with GingisKHAN

Antibodies formulated as solid-state depots can potentially be used for local treatments and minimize the need for large systemic doses. Bevacizumab may for instance be administered locally to control post-operative scarring following glaucoma filtration surgery. A solid-state form would however be required in order to obtain a proper slow release of the antibody. Read more »

Monitoring Glycation Levels on Bispecific Biologics using FabRICATOR®

November 18, 2019 | References |

Bispecific monoclonal antibodies (BsAbs) are multi-functioning and complex biologics with the ability to recognize two different epitopes for improved therapeutic properties. Characterizing protein modifications such as glycation on biologics is vital to ensure consistency in stability and function. The structural complexity of BsAbs requires robust analytical methods, where conventional top-down and bottom-up strategies may lack in sensitivity or even introduce further modifications. Middle-level analysis using site-specific proteases such as GingisKHAN®(Kgp) and FabRICATOR®(IdeS) is an intermediate strategy that enables complementary analysis of intact or reduced Fab and Fc fragments.


In a recent article by Gstöttner et al. (2019) from Leiden University together with Roche Pharma Technical Development, the authors analyzed a BsAb for protein modification levels, N- and C-terminal sequencing and modification localization using top-down, middle-level and bottom-up strategies. The BsAb was analyzed for changes in glycation levels over time using middle-up FT-ICR MS on Fc/2, LC and Fd’ fragments obtained by FabRICATOR digestion. The scientists also localized glycation hot spots on the heavy chain backbone of the FabRICATOR-digested BsAb using sequential in source decay (ISD) MALDI fragmentation.


Using FabRICATOR in a novel middle-up MS strategy, the scientists were able to analyze all antibody subunits in a single high-resolution mass spectrum. By implementing the method in a forced-glycation experiment, changes in glycation levels were successfully monitored over time. The authors were also able to localize several glycation hot spots by intact top-down and FabRICATOR-assisted middle-down analyses. The use of middle-level strategies in combination with conventional MS-based methods successfully provided complementary data for monitoring the level of glycation.


Learn more about FabRICATOR and our other proteases.


Gstöttner, C. et al., 2019. Monitoring glycation levels of a bispecific monoclonal antibody at subunit level by ultrahigh resolution MALDI FT-ICR mass spectrometry. mAbs. doi: 10.1080/19420862.2019.1682403.

SmartEnzymes™ in a new approach to characterize ADCs

October 25, 2019 | Applications, References |

Antibody drug conjugates (ADCs) consist of monoclonal antibodies chemically linked to a cytotoxic agent. The target specificity of the monoclonal antibody in combination with the potency of the cytotoxic drug make ADCs promising therapeutic agents. However, the molecules are often complex, making evaluation of the quality attributes for the ADC challenging.


In order to characterize the ADCs, the predominant analysis of choice is peptide mapping with reversed-phase liquid chromatography (RPLC) coupled to mass spectrometry. However, the sample preparation steps in a bottom-up approach are often time-consuming and a comprehensive view of ADCs with different sequence variants and post-translational modifications is lacking.


In this recently published article by Chen et al., a middle-down RPLC-MS strategy with electron transfer disscociation (ETD) was developed to analyze lysine and cysteine conjugated ADCs at the subunit level. FabRICATOR® (IdeS) and GingisKHAN® (KGB) were used to generate the subunits. FabRICATOR digests below the hinge, generating F(ab’)2 and Fc/2 fragments, and GingisKHAN digests above the hinge, generating intact Fab and Fc fragments. For the deglycosylation, the IgG-specific endoglycosidase GlycINATOR® (EndoS2) was used.


This middle-down approach enabled high-resolution evaluation of several ADC quality attributes at the subunit level, including drug to antibody ratio (DAR), conjugation sites and micro-variants. The approach shows great potential for investigating quality attributes during the development and characterization of novel ADCs.


Read more about FabRICATOR, GingisKHAN and GlycINATOR.


Chen, B et al., 2019. Middle-Down Multi-Attribute Analysis of Antibody-Drug Conjugates with Electron Transfer Dissociation. Anal. Chem. 91(18). 11661-11669.

SmartEnzymes™ in Multiplexed Middle-Down MS for targeted structure analysis



 In a recent article by Srzentic et al. (2018) the authors present a multiplexed middle-down MS workflow with improved performance for targeted protein structure analysis. Using GingisKHAN for antibody digestion, the authors analysed the F(ab) subunits of a therapeutic mAb. By implementing spectral and transient averaging of mass spectra across several LC-MS experiments, the authors revealed valuable information on chain pairing in the mAb.


To make the analysis, the therapeutic mAb trastuzumab was digested above the hinge using the GingisKHAN enzyme to generate intact F(ab) subunits. Intact myoglobin was subjected to analysis in a top-down MS approach to benchmark the workflow. The GingisKHAN-generated F(ab) subunits were then analysed using the middle-down MS workflow to compare the performance of data averaging approaches.


The results show the performances of spectral and transient averaging for tandem mass spectra as separate software tools for structural protein analysis. The transient averaging provided the most extensive sequence coverage for the F(ab) subunits, followed by spectral averaging. Furthermore, utilizing the multiplexed middle-down MS workflow for subunit analysis, the authors detected low-abundance branched product ions revealing valuable information about the light and heavy chain connectivity.


GingisKHAN® (Kgp enzyme) is a cysteine protease that digests human IgG1 at a specific site above the hinge region. The enzyme generates intact Fc and Fab subunits in 60 minutes.

Learn more about GingisKHAN

Srzentic et al., 2018. Multiplexed Middle-Down Mass Spectrometry Reveals Light and Heavy Chain Connectivity in a Monoclonal Antibody

Antibody Sequence Analysis using GingisKHAN® and FabRICATOR®

September 28, 2018 | Applications, References |

  In an article by Luca Fornelli & Kristina Srzentic et al. recently published in Analytical Chemistry the authors present a workflow for antibody sequence determination by combining top-down and middle-down LC/MS. The authors analyzed the therapeutic antibody rituximab in its intact and fragmented form, using FabRICATOR and GingisKHAN to generate antibody subunits. By combining the performance of multiple ion activation techniques and a new software tool with top-level and middle-level strategies, the authors achieved extensive sequence coverage and obtained valuable information on key quality attributes.

  Rituximab was fragmented using members of the SmartEnzymes™ family for the generation of various antibody subunits. GingisKHAN was used for generating intact Fc and Fab subunits by site-specific cleavage of IgG1 above the hinge region. In order to obtain antibody subunits Fc/2, Fd and LC the authors used FabRICATOR-digestion followed by reduction. The intact antibody and the antibody subunits were analyzed using reversed phase LC/MS coupled with three separate ion activation techniques, and analyzed using a new software tool for fragment ion deconvolution.

  The complementing features of the ion activation techniques provided high quality information for a low number of LC/MS experiments. The authors achieved sequence coverage equivalent to what is obtainable with bottom-up strategies. In addition, the authors were able to analyze quality attributes such as PTMs, chain pairing and intact antibody mass determination – properties otherwise lost after extended proteolysis. These results highlight the benefits of combining top-level and middle-level strategies for applications currently performed by bottom-level strategies.

GingisKHAN® (Kgp enzyme) is a cysteine protease that digests human IgG1 at a specific site above the hinge region. The enzyme generates intact Fc and Fab subunits in 60 minutes.

Learn more about GingisKHAN

Fornelli et. al., 2018. Accurate Sequence Analysis of a Monoclonal Antibody by Top-Down and Middle-Down Orbitrap Mass Spectrometry Applying Multiple Ion Activation Techniques.