Articles tagged ”Deglycosylation”

NEW! Sugar-free Proteins in a Few Hours using OmniGLYZOR

June 6, 2022 | New Product, News |

OmniGLYZOR hydrolyzes N- and mucin-type O-glycans. It contains a mixture of immobilized enzymes for fast and efficient removal of N- and simple mucin-type O-glycans on antibodies, fusion proteins and other glycosylated proteins.

Removal of glycans is widely used to reduce heterogeneity to facilitate analysis of the protein by for example mass spectrometry. Deglycosylation can also be used to study the functional role of the glycans.
 
Read more »

Investigating IgG Delivery Across the Blood-Brain Barrier with GlycINATOR®

Scientists from the University of Delaware demonstrate the use of GlycINATOR for studying transcytosis of IgG in an in vitro model of the blood-brain barrier.
 

Brain endothelial cells (BECs) are important structural components of the blood-brain barrier with a unique physiology that restricts permeability of blood-borne molecules such as therapeutic antibodies to the brain. The neonatal fragment crystalline receptor (FcRn) is known to mediate IgG recycling and transcytosis in peripheral epithelium, but the role of FcRn in transcytosis of antibodies in BECs remains uncertain.
 

In this paper, Ruano-Salguero and Lee study the role of FcRn in transcytosis of IgG across the blood-brain barrier in BEC-like cells (iBECs) derived from induced human pluripotent stem cells. Using microscopy-based methods, different antibody species and subunits were compared to investigate the role of FcRn on transcytosis of IgG. To specifically determine the impact of Fc-glycosylation on permeability, all glycoforms on human IgG1 was removed using the GlycINATOR enzyme and the deglycosylated antibodies analyzed in iBECs using live-cell microscopy. Finally, the authors also investigated the impact of biophysical properties such as charge and size on transcytosis mechanisms.
 

Using the in vitro blood-brain barrier model, the scientists found that FcRn mediates both recycling and reduced lysosomal accumulation of IgG in iBECs. Transcytosis of antibodies across the in vitro blood-brain barrier exhibited non receptor-medicated mechanisms that were unaffected by human FcRn-binding motifs and Fc-glycoforms as demonstrated by the different species and deglycosylated human IgG1. Investigations of intracellular trafficking by FcRn binding or other IgG-specific mechanisms were further observed to be non-saturable, indicating fluid-phase permeability. Interestingly, the authors found that biophysical changes enhanced permeability of molecules with positively charged isoelectric points. These results highlight the potential for use of in vitro models as well as characterization and modification of biophysical properties to improve therapeutic delivery to the brain.
 

Deglycosylation of IgG using the GlycINATOR enzyme decreases binding to Fc-receptors (FcRs) enabling bifunctional assays to study glycan-mediated interactions such as ADCC activity. The binding to FcRn is however preserved with GlycINATOR, allowing recycling and increased circulation in vivo of deglycosylated IgG and GlyCLICK conjugated ADCs.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ruano-Salguero and Lee, 2020. Antibody transcytosis across brain endothelial-like cells occurs nonspecifically and independent of FcRn. Sci Rep 10, 3685. https://doi.org/10.1038/s41598-020-60438-z