Articles tagged ”ADC”

ADC Biotransformation Analysis using FabRICATOR and LC-MS

March 11, 2020 | References |

Current strategies for analyzing in vivo biotransformation of antibody-drug conjugates (ADCs) are limited by the site of conjugation, extensive sample preparation and insufficient sensitivity. In this paper by Kotapati et al., the authors developed a universal affinity capture method for assessing the effects of biotransformation on any site-specific ADC using generic reagents and LC-HRMS analysis.


Antibody-Drug Conjugates (ADCs) can undergo in vivo biotransformation where the payload can be metabolized to an inactive species or be subjected to deconjugation releasing the payload into systemic circulation. Strategically selected conjugation sites can minimize proteolytic cleavage or steric hindrance of the surrounding mAb domains, ultimately improving the potency and stability in vivo. The process of screening for optimal conjugation sites is therefore an important part of ADC discovery and development.


ADCs prepared from various antibodies and payloads with site-specific conjugation sites at the LC, HC-Fab and HC-Fc were prepared and analyzed using a mono- or dual affinity capture method. Streptavidin magnetic beads coated with anti-human F(ab’)2 captured ADCs from mouse serum and were processed on a KingFisher Flex automated magnetic extraction instrument. The captured ADCs were then, according to conjugation site, either subjected to reduction, on-bead digestion with only the FabRICATOR enzyme or in combination with PNGaseF for complete Fc-deglycosylation. The samples were then either reduced or eluted directly for analysis using high resolution LC-TOF mass spectrometer.


With this method, the authors were able to successfully study biotransformation of site-specific ADCs independent of antibody type, conjugation type or linker-payload chemistry. Using the site-specific FabRICATOR enzyme, HC-Fab and HC-Fc ADCs were digested below the hinge into homogenous F(ab’)2 and Fc subunits for the generation of antibody fragments. Compared to intact ADC analysis, this middle-level approach increased the resolution and sensitivity for identification of the conjugated payload and its metabolites at exceptional sensitivity and resolution.


Kotapati et al., 2020. Universal Affinity Capture Liquid Chromatography-Mass Spectrometry Assay for Evaluation of Biotransformation of Site-Specific Antibody Drug Conjugates in Preclinical Studies. Analytical Chemistry (92). pp. 2065-2073. doi: 10.1021/acs.analchem.9b04572


ADC Subunit Characterization of Drug Load and Glycosylation using HILIC-MS


In a collaboration headed by Davy Guillarme at University of Geneva, scientists have explored the characterization of subunits derived from antibody drug conjugates (ADCs) using hydrophilic interaction chromatography (HILIC) coupled to mass spectrometry (D’Atri et al. 2018).
The scientists used brentuximab vedotin (BV, Adcetris®), an approved ADC for treatment of Hodgkin lymphoma (HL) and systemic anaplastic large cell lymphoma (ALCL). The BV consists of an antibody directed towards CD30, coupled to the vedotin toxin using cysteine conjugation chemistry. The random cysteine conjugation method results in a heterogeneous attachment of the drug, with differences in efficacy depending on the drug load. For this reason, the amount of conjugated toxins requires careful characterization. A key quality attribute of both antibodies and ADCs is the glycosylation profile, that may affect the stability, efficacy and safety. In this paper, a method to study ADC drug load and glycan profiling in a single experiment was demonstrated.


The intact ADC is around 150 kDa, which makes it very complicated to study details with high resolution. For this reason, D’Atri and colleagues used FabRICATOR digestion and reduction to generate specific antibody subunits of around 25 kDa, with increased resolution in both separation and mass determination. New wide-pore HILIC phase has enabled separation of larger molecules such as antibody subunits, and the team has already published a glycoprofiling strategy using HILIC on naked antibodies (Periat et al. 2016).


The coupling of HILIC separation to MS of subunits resulted in more detailed characterization of the subunits as compared to reverse phase separation (RP-HPLC). The relative percentage of each subunit aligned well with both methods of separation. However, additional positional isomers of the Fd’ fragment were observed using HILIC separation. Also, the glycoforms of the Fc/2 fragments were chromatographically separated, making mass deconvolution and determination easier. The authors conclude the middle-up HILIC-MS method to be orthogonal to RP-MS with the benefit that the methodology allows simultaneous characterization of drug load and glycosylation of the antibody drug conjugate.


FabRICATOR is a protease with a single digestion site below the hinge of IgG. The enzyme is widely used in middle-level analytical workflows for characterization of antibody based biopharmaceuticals. Learn more about FabRICATOR.



D’Atri, V. et al., 2018. Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. Journal of Chromatography B, 1080, pp.37–41.

Periat, A. et al., 2016. Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. Journal of chromatography. A, 1448, pp.81–92.

New references on IgG glycosylation, glycation and ADC characterization using IgGZERO and FabRICATOR

March 23, 2016 | References |

New references are out using Genovis enzymes to study antibody glycation, pairing of high-mannose glycans and ADC characterization using CE-MS.

Read more »