Assessment of Oxidation using FabRICATOR and LC/MS
Oxidation of methionine residues in the Fc region of a therapeutic antibody may affect the binding of the antibody to Protein A and FcRn leading to difficulties in purification or increased clearence in vivo. For the variable regions of the antibody, oxidation may affect antigen binding or lead to increased immunogenicity. For these reasons, the propensity of an IgG molecule to become oxidized is a critical quality attribute to consider early in the selection of therapeutic antibody candidates. The team at Adimab have developed an high-throughput assay based on FabRICATOR digestion and LC/MS analysis to evaluate the oxidation levels of 121 clinical stage antibodies. The antibodies were digested with FabRICATOR for 30 min at 37°C and reduced with DTT to obtain Fc, Fd and LC, prior to analysis on LC/MS, an approach called middle-down. The scientists correlated the observed oxidations with a model of predicted solvent-exposed methionine residues. They authors discovered oxidation at antibodies experimentally that were not predicted in the model, probably due to inaccurate crystal structures or differences in expression host.
Taken together, the paper by Yang et al demonstrates the robustness of the oxidation assay based on FabRICATOR digestion and subunit analysis. The 121 antibodies analyzed in the paper indicated this method applicable to early clone selection for evaluation of antibody oxidation at the subunit level.
- Yang, R. et al., 2017. Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies. mAbs, Ahead of print.
- Read more about FabRICATOR